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Secure Key Distribution Problem
• Bad scalability of symmetric key cryptosystems
• Public key distribution system as a solution
Public Key Cryptography
• Inventors
• Basic Principles
• One-way functions with trap doors
• Hard problems
Mathematical Operations in Finite Fields
• Addition
• Negative element
• Multiplication
• Inverse element
RSA Public Key Cryptosystem
• Hard problem of factoring large numbers
• Key generation algorithm
• Public and private keys
• Encryption and decryption
• Efficient Exponentiation of large numbers
• Contest
• How to find large prime numbers
Diffie-Hellman Key-Exchange Algorithm
• Generating a common secret key
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Key Distribution Problem in Dense Networks
• In densely-meshed networks where many parties communicate with each other,
the required number of secret keys necessary when using symmetric encryption
algorithms increases quadratically with the number of participants since in a
fully-meshed network to each of the n communication partners (n-1) keys must be
securely delivered.

• Take as an example a broadband communications network with 100 fully-meshed
nodes were each session key is changed every hour, resulting in a requirement to
safely distribute about 240‘000 keys each day.

• As can easily be seen, secret key distribution scales very badly with an increasing
number of participants. Therefore for a long time people had been looking for
alternative ways of establishing secure connections. A very efficient solution was
finally found in 1976 with the novel concept of a Public Key Cryptosystem.
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Public Key Distribution System
• In a Public Key Cryptosystem each user or host possesses a single key pair
consisting of a private key which is kept secret by the no and a matching public key
which is published in a public directory (usually an LDAP or WWW server).

• If a user Alice wants to send an encrypted message to user Bob then Alice encrypts
her message with Bob‘s public key KB fetched from the public directory and sends
it to Bob. Since Bob is the only one in possession of the matching private key, he
alone can decrypt the encrypted message sent to him.

• Since only the public key of the recipient is required, with n users only n distinct
keys are required. Under the assumption that each user generates her own public/
private key pair locally, no secure channels are required for the distribution of the
public keys, since the don‘t contain any secret and must be put into the public
domain anyway.
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The Inventors
Whitfield Diffie and Martin Hellman 1976
Ralph Merkle 1978
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Inventors of Public Key Cryptography
• The concept of a Public Key Cryptosystem was invented at around the same

time by Whitfield Diffie, Martin Hellman and Ralph Merkle. Whereas the first
two researchers published their invention in 1976 and got all the fame,
Ralph Merkle had the misfortune that the printing of his paper got delayed by
more than a year so that it got published not until 1978. Today it is generally
recognized that all three scientists are the fathers of public key cryptography.

• Recently it became known that already in 1970, James Ellis, at the time working
for the British government as a member of the Communications-Electronics
Security Group (CESG), formulated the idea of a Public Key Cryptosystem.
Several practical algorithms including one variant very similar to RSA and
another one identical to the Diffie-Hellman key exchange were discovered within
the CESG. Unfortunately the British researchers were not allowed to publish their
results due to state security reasons.

Basic Principles of Public Key Cryptography
• All public key cryptosystems are based on the notion of a one-way function,
which, depending on the public key, converts plaintext into ciphertext using a
relatively small amount of computing power but whose inverse function is
extremely expensive to compute, so that an attacker is not able to derive the
original plaintext from the transmitted ciphertext within a reasonable time frame.

• Another notion used in public key cryptosystems is that of a trap door which
each one-way function possesses and which can only be activated by the
legitimate user holding the private key. Using the trapdoor, decryption of the 
ciphertext becomes easy.

• Many public key cryptosystems are based on known hard problems like the
factoring of large numbers into their prime factors (RSA) or taking discrete
logarithms over a finite field (Diffie-Hellman).  
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The Inventors
R - Ron Rivest
S - Adi Shamir
A - Leonard Adleman

The One-Way Function
The exponentiation function y = f(x)  =  xe mod n
can be computed with reasonable effort.
Its inverse x = f -1(y) is extremely difficult to compute.

The Hard Problem Securing the Trap Door
The RSA public key algorithm is based on the well-known 
hard problem of  factoring large numbers into its prime 
factors that has been studied over many centuries.
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The Effort
512 bit number (155 decimal digits)
factored on August 22, 1999 after 7 months of cracking
300 workstations and Pentium PCs, 1 Cray supercomputer

109417386415705274218097073220403576120
037329454492059909138421314763499842889
347847179972578912673324976257528997818
33797076537244027146743531593354333897
= ?=
102639592829741105772054196573991675900
716567808038066803341933521790711307779
*
106603488380168454820927220360012878679
207958575989291522270608237193062808643



A. Steffen, 28.03.2001, KSy_RSA.ppt 7

Zürcher
Hochschule
WinterthurSecure Network Communication – Part II

Mathematical Operations in
Finite Fields

Mathematical Operations in
Finite Fields



A. Steffen, 28.03.2001, KSy_RSA.ppt 8

Zürcher
Hochschule
WinterthurMathematical Operations in Finite Fields

Addition

c =  (a + b) mod n = ( a mod n + b mod n) mod n

Example with modulus n = 5

0 1  2  3  4

1  2  3  4  0

2  3  4  0  1

3  4  0  1  2

4  0  1  2  3

0 1  2  3  4

0

1

2

3

4

a

b c

+

(7 + 9) mod 5 = 16 mod 5  =  1

(7 + 9) mod 5 = (7 mod 5 + 9 mod 5) mod 5
= (      2      +       4      ) mod 5
=  6 mod 5  =  1
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Negative Element

y =  -x mod n or y + x mod n  =  0

y 0 4 3 2 1

x 0 1  2  3  4

Example with modulus n = 5
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Multiplication

c =  (a ⋅⋅⋅⋅ b) mod n = ( a mod n ⋅⋅⋅⋅ b mod n) mod n

Example with modulus n = 5

0 0 0 0 0

0  1  2  3  4

0  2  4  1  3

0  3  1  4  2

0  4  3  2  1

0 1  2  3  4

0

1

2

3

4

a

b c

⋅⋅⋅⋅

(7 ⋅⋅⋅⋅ 9) mod 5 = 63 mod 5  =  3

(7 ⋅⋅⋅⋅ 9) mod 5 = (7 mod 5 ⋅⋅⋅⋅ 9 mod 5) mod 5
= (      2     ⋅⋅⋅⋅ 4      ) mod 5
=  8 mod 5  =  3
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Inverse Element

y =  x -1 mod n or y · x mod n  =  1

y - 1 3 2 4

x 0 1  2  3  4

Example with modulus n = 5
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RSA Public Key CryptosystemRSA Public Key Cryptosystem
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Key Generation Algorithm

Step 1:  Choose two random large prime numbers p and q
For maximum security, choose p and q of about equal length,
e.g. 512-1024 bits each.

Step 2:  Compute the product n = p·q

Step 3:  Choose a random integer e < (p-1)(q-1)
The numbers e and (p-1)(q-1) must be relatively prime, i.e. they 
should not share common prime factors.

Step 4:  Compute the unique inverse    d = e-1 mod (p-1)(q-1)
The equation d·e mod (p-1)(q-1) = 1
can be solved using the Euclidian algorithm.
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(p-1)·(q-1) = 2 · 10 = 2 · 2 · 5 =  20

RSA Public Key Cryptosystem
Key Generation Example

p = 3,  q = 11:       n = p·q = 33

the public exponent e must be relatively prime to (p-1)·(q-1) , 
i.e. it cannot contain any factors of 2 and 5

e       d     e·d     e·d mod 20
3   7   21     1
7   3   21     1
9   9   81     1

11  11  121     1
13  17  221     1
17  13  221     1
19  19  361     1

all possible choices for
the exponents e and d 
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Public and Private Keys

Public Key:  „modulus“ n and „public exponent“ e
Publish n and e in a public directory, so that anybody wanting 
to send you a confidential message can retrieve it.

Private Key:  „modulus“ n and „private exponent“ d
The private exponent d is your secret. It should be protected 
either by storing it in a tamper-proof smart card or when stored 
on a disk by encrypting it with a symmetric cipher secured by a 
secret passphrase of your choice.
The large primes p and q that were used for key generation are
not needed any more and should be erased.



A. Steffen, 28.03.2001, KSy_RSA.ppt 16

Zürcher
Hochschule
WinterthurRSA Public Key Cryptosystem

Encryption and Decryption

Encryption of a plaintext block x: y = xe mod n
The sender uses the public key 
of the recipient to encrypt x < n.

Decryption of a ciphertext block y: x = yd mod n
The recipient uses her private key 
to recover the plaintext block x

yd = (xe)d = xe·d = xm·(p-1)·(q-1) + 1 = x1 = x (mod n )yd = (xe)d = xe·d = xm·(p-1)·(q-1) + 1 = x1 = x (mod n )

Without proof:

Encryption and Decryption are symmetric operations
The order of the exponentiation with the public exponent e
and the private exponent d can be exchanged.
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Encryption / Decryption Example

Decryption with Private Key      n = 33, d = 7

Binary Plaintext 0101001001001011010011 ...

Decimal Plaintext 10     9     5    20

Groups of 5 Bits 01010 01001 00101 10100 ...

y = x3 1000   729   125  8000

y = x3 mod 33 10     3    26    14

x = y7 107 2187    267 147

x = y7 mod 33 10     9     5    20

Decimal Ciphertext 10     3    26    14

Encryption with Public Key       n = 33, e = 3
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Efficient Exponentiation of Large Numbers

Multiplication in finite fields
(a·b) mod n = [ (a mod n) · (b mod n) ] mod n

Straight exponentiation method with e-1 multiplications
y = xe = x · x ·... · x  mod n 

Efficient exponentiation with < 2·log2 e multiplications
based on the binary representation of the exponent

e  =  bk 2k + bk-1 2k-1 + ... + bi 2i + ... + b2 22 + b1 2 + b1
with bi = {0,1} and k = log2 e 

y x x x x x n
k k k kb b b b b= ⋅ ⋅ ⋅ ⋅ ⋅

− −2 2 2 21 1 2 2 1 0e j e j e j c h b g mod

x x n
i i2 2

21

=
−e j modwith the iterative squaring:
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e = 1·23 + 1·22 + 0·21 + 1·20

e = 1·8 + 1·4 + 0·2 + 1·1

y = xe =(x8)1 ·(x4)1·(x2)0·(x)1 mod n

y = x8·x4·x mod n

x2 = x·x mod n, x4 = x2·x2 mod n, x8 = x4·x4 mod n

d = 1·24 + 0·23 + 0·22 + 0·21 + 1·20

d = 1·16 + 0·8 + 0·4 + 0·2 + 1·1

x = yd =(y16)1 ·(y8)0 ·(y4)0·(y2)0·(y)1 mod n

x = y16·y mod n

y2 = y·y mod n, y4 = y2·y2 mod n, y8 = y4·y4 mod n,

y16 = y8·y8 mod n

RSA Public Key Cryptosystem
Exponentiation Example

Encryption with Public Key     n = 33, e = 13 

Decryption with Private Key    n = 33, d = 17 
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Contest

Choose a plaintext number 1 < x < 33 and keep it secret!

Encrypt x with RSA using the public key n = 33, e = 13.

Exchange the encrypted number y with your neighbour.

Decrypt your neighbour‘s number using the private key
n = 33, d = 17.

Check with your collegue if the decrypted number equals
the original plaintext number.
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Plaintext to Ciphertext Mapping

n = 33,  e = 13,  d = 17        y = xe mod n

x       y          x        y           x      y           x  y           x       y

0   0   8  17  16   4  24  30  32  32
1   1   9   3  17  29  25  16
2   8    10  10  18  24  26  20
3  27    11  11  19  28  27  15
4  31    12  12  20  14  28   7
5  26    13  19  21  21  29   2 
6  18    14   5  22  22  30   6
7  13    15   9  23  23  31  25
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How to find large random prime numbers

There are 10151 primes 512 bits in length or less.
There are only 1077 atoms in the universe.
The chance that two people choose the same prime factors 
for key generation is therefore near to nil !
To prove that a randomly chosen number is really prime 
you would have to factor it. Try small factors (3, 5, 7, 11, ...)
Probabilistic Primality Tests (e.g. Rabin-Miller)  

After passing 5 tests, assume a random number to be prime  

is prime

composite number

0 %

100 % 0.1 %

not prime

prime number99.9 %

random number is aResult
of

Primality
Test
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Diffie-Hellman
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Diffie-Hellman
Key-Exchange Algorithm
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Generating a Common Secret Key

Alice and Bob agree on a large prime modulus n, a primitive 
element g and the one-way function y = f(x) = gx mod n.
The integers n and g are not secret and can be published.
Alice chooses a large random integer a and sends Bob

A = ga mod n
Bob chooses a large random integer b and sends Alice

B = gb mod n
Alice computes

s = Ba mod n  =  gba mod n
Bob computes

s = Ab mod n  =  gab mod n
Alice and Bob share now the secret key s = gab mod n
Since computing the inverse x = f-1(y) is extremely difficult, 
no one listening to the key-exchange can compute the 
secret key s from the values A, B, n and g.
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Practical Example

y =  gx mod n Prime modulus: n = 31
Primitive element: g = 3

y   1  3  9 27 19 26 16 17 20 29 25 13  8 24 10 30

x   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

y  28 22  4 12  5 15 14 11  2  6 18 23  7 21  1

x  16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A: a = 8  ⇒⇒⇒⇒ A = 38 mod 31 = 20

B: b = 6  ⇒⇒⇒⇒ B = 36 mod 31 = 16 s = 206 mod 31 = 4

s = 168 mod 31 = 4


